dc.contributor.author |
GHILAN, Zinaida |
|
dc.contributor.author |
COVALSCHI, Anatolie |
|
dc.date.accessioned |
2019-09-11T15:27:52Z |
|
dc.date.available |
2019-09-11T15:27:52Z |
|
dc.date.issued |
2016 |
|
dc.identifier.citation |
GHILAN, Zinaida, COVALSCHI, Anatolie. Probleme cu limite de funcţii. In: Probleme ale ştiinţelor socioumanistice şi modernizării învăţământului: materialele conf. şt. anuale a profesorilor şi cercetătorilor UPS „Ion Creangă”. Univ. Ped. de Stat „Ion Creangă”; coord. şt. Ig. RACU, col. red. A. VERDEŞ [et al.]: [in vol.]. Chişinău: S. n., 2016 (Tipogr. UPS „Ion Creangă”), vol. 1 (seria 18), p. 246-254. Bibliogr.- 3 titl. |
en_US |
dc.identifier.uri |
http://hdl.handle.net/123456789/1672 |
|
dc.description.abstract |
In this paper we present some brief definitions, concepts and properties that can be used to solve the problems with limits of functions. The concept of the limit of a function at a point is rooted in the XVII and XVIII centuries. The definition of the limit of a function at a point was formulated by Karl Weierstrass, using the concept of a point neighborhood. The calculation of limits of functions supposes knowledge of methods for determining the limits of elementary functions, limits of remarkable and of the algorithms to eliminate non-determinations that may arise in this context. |
en_US |
dc.language.iso |
ro |
en_US |
dc.publisher |
Universitatea Pedagogică de Stat “Ion Creangă” |
en_US |
dc.subject |
Matematică--limita funcţiei |
en_US |
dc.subject |
Analiza matematică |
en_US |
dc.subject |
Funcţie matematică |
en_US |
dc.title |
Probleme cu limite de funcţii |
en_US |
dc.type |
Article |
en_US |