| dc.contributor.author | GHILAN, Zinaida | |
| dc.contributor.author | COVALSCHI, Anatolie | |
| dc.date.accessioned | 2019-09-11T15:27:52Z | |
| dc.date.available | 2019-09-11T15:27:52Z | |
| dc.date.issued | 2016 | |
| dc.identifier.citation | GHILAN, Zinaida, COVALSCHI, Anatolie. Probleme cu limite de funcţii. In: Probleme ale ştiinţelor socioumanistice şi modernizării învăţământului: materialele conf. şt. anuale a profesorilor şi cercetătorilor UPS „Ion Creangă”. Univ. Ped. de Stat „Ion Creangă”; coord. şt. Ig. RACU, col. red. A. VERDEŞ [et al.]: [in vol.]. Chişinău: S. n., 2016 (Tipogr. UPS „Ion Creangă”), vol. 1 (seria 18), p. 246-254. Bibliogr.- 3 titl. | en_US |
| dc.identifier.uri | http://hdl.handle.net/123456789/1672 | |
| dc.description.abstract | In this paper we present some brief definitions, concepts and properties that can be used to solve the problems with limits of functions. The concept of the limit of a function at a point is rooted in the XVII and XVIII centuries. The definition of the limit of a function at a point was formulated by Karl Weierstrass, using the concept of a point neighborhood. The calculation of limits of functions supposes knowledge of methods for determining the limits of elementary functions, limits of remarkable and of the algorithms to eliminate non-determinations that may arise in this context. | en_US |
| dc.language.iso | ro | en_US |
| dc.publisher | Universitatea Pedagogică de Stat “Ion Creangă” | en_US |
| dc.subject | Matematică--limita funcţiei | en_US |
| dc.subject | Analiza matematică | en_US |
| dc.subject | Funcţie matematică | en_US |
| dc.title | Probleme cu limite de funcţii | en_US |
| dc.type | Article | en_US |