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Rezumat. Pentru ecuațiile algebrice de gradul întâi, doi, trei și patru există metode generale de rezolvare a 

lor și aceste metode sunt cunoscute destul de bine. De asemenea este demonstrat că ecuațiile algebrice de 

gradul cinci și mai mare, în caz general, nu pot fi rezolvate în radicali. Referitor la ecuațiile iraționale 

situația este cu totul alta. Chiar rezolvând ecuații iraționale ce conțin radicali de ordinul doi de acum se 

întâlnesc anumite dificultăți. Evident că situația devine și mai dificilă atunci când ecuația irațională conține 

radicali de ordin diferit. Astfel, în acest articol, se propune o metodă pur geometrică de rezolvare a ecuațiilor 

și inecuațiilor iraționale ce conțin radicali de gradul doi. 

Cuvinte cheie: ecuație irațională, bisectoare, soluție, metodă, inecuație irațională. 

 

Abstract. For algebraic equations of the first, second, third, and fourth degrees there are general methods 

of solving them, and these methods are fairly well known. It is also shown that algebraic equations of degree 

five and higher, in general, cannot be solved in radicals. With regard to irrational equations, the situation is 

completely different. Even solving irrational equations containing radicals of the second order now 

encounter certain difficulties. Obviously, the situation becomes even more difficult when the irrational 

equation contains radicals of different order. Thus, in this article, a purely geometric method for solving 

irrational equations and inequations containing radicals of the second degree is proposed. 

Keywords: irrational equation, bisector, solution, method, irrational inequation. 

 

I. Introduction 

In the process of solving irrational equations we encounter different "obstacles", 

because there is no universal method that would allow us to solve the given equation and 

at the same time be a rational and "convenient" method for us [1, 2, 3]. 

In this article we will indicate geometric methods for solving irrational equations, 

which in certain cases are quite "convenient" for us and at the same time are the simplest. 

 

II. The case of the interior bisector of the triangle 

First we will prove the following lemma: 

Lemma 1. Let  ab > 0 and c > 0, where a, b, c are real numbers. The number x0 is a solution 

of the equation √𝑎2 + 𝑥2 − 2𝑎𝑑𝑥 + √𝑏2 + 𝑥2 − 2𝑏𝑑𝑥 = 𝑐, if and only if the number − x0 

is a solution of the equation √𝑎2 + 𝑥2 + 2𝑎𝑑𝑥 + √𝑏2 + 𝑥2 + 2𝑏𝑑𝑥 = 𝑐. 

Demonstration. We will have 

√𝑎2 + 𝑥0
2 − 2𝑎𝑑𝑥0 + √𝑏2 + 𝑥0

2 − 2𝑏𝑑𝑥0 = 𝑐 ⇔ 
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⇔ √𝑎2 + (−𝑥0)2 + 2𝑎𝑑 ⋅ (−𝑥0) + √𝑏2 + (−𝑥0)2 + 2𝑏𝑑 ⋅ (−𝑥0) = 𝑐. 

The Lemma 1 is proved. 

We next prove the following theorem: 

Theorem 1. Let ab > 0, c > 0 and 0 < d < 1, where a, b, c, d are real numbers. Irrational 

equation of the form 

√𝑎2 + 𝑥2 − 2𝑎𝑑𝑥 + √𝑏2 + 𝑥2 − 2𝑏𝑑𝑥 = 𝑐,    (1) 

which satisfies the condition 

c2 = (a + b)2 − 4abd2                (2) 

admits a unique solution. 

Demonstration. We indicate the following two methods. 

Method 1. Algebraic method. We write the irrational equation (1) in the form: 

√𝑎2 + 𝑥2 − 2𝑎𝑑𝑥 = 𝑐 − √𝑏2 + 𝑥2 − 2𝑏𝑑𝑥. 

By raising both sides to the second power 

2𝑐√𝑏2 + 𝑥2 − 2𝑏𝑑𝑥 = (𝑏2 + 𝑐2 − 𝑎2) + 2𝑑(𝑎 − 𝑏)𝑥, 

where from 

4(d² (a − b)² − c2)x² + (8bdc²  + 4d(b² + c² − a²)(a − b))x + 

+ (b² + c² − a²)² − 4b²c² = 0.      (3) 

According to condition (2) 

c2 = (a + b)2 − 4abd2. 

So 

4(d²(a − b)² − c²) = 4(a + b)²(d² − 1), 

8bdc² + 4d(b² + c² − a²)(a − b) = − 16abd(a + b)(d² − 1), 

(b² + c² − a²)² − 4b²c² = 16a²b²d²(d² − 1). 

Therefore, equation (3) will take the form: 

4(a + b)²x² − 16abd(a + b)x + 16a²b²d² =0, 

where from 

(2(a + b)x − 4abd)2 = 0 or 𝑥 =
2𝑎𝑏𝑑

𝑎+𝑏
. 

Method 2. Geometric method. Two cases are possible.  

Case 1. a > 0, b > 0 and a ≥ b. Since 0 < d < 1, then and 0 < d² < 1. After some elementary 

transformations we obtain a − b < c < a + b, that is, a, b and 

c are the lengths of the sides of a triangle. Therefore, the 

irrational equation (1) admits only positive solutions. We 

construct a triangle ABC with sides AB = c, BC = a and AC 

= b (fig. 1).  

Let m(ACB) = γ. According to the cosine theorem 

c² = a² + b² − 2ab cos γ. 
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But according to condition (2) 

c2 = (a + b)2 − 4abd2. 

Thus 

a² + b² − 2ab cos γ = (a + b)2 − 4abd2, 

where from cos γ = 2d − 1. Because cos 𝛾 = 2 cos2 𝛾

2
− 1, it follows that 𝑑 = cos

𝛾

2
. Then 

the irrational equation (1) can be written in the form: 

√𝑎2 + 𝑥2 − 2𝑎𝑥 cos
𝛾

2
+ √𝑏2 + 𝑥2 − 2𝑏𝑥 cos

𝛾

2
= 𝑐.    (4) 

We take the bisector of the angle ACB. Let x be one 

of the solutions of equation (1). We place on this bisector 

the segment CD = x (fig. 2) and prove that point D 

belongs to side [AB]. 

According to the theorem of cosines, for the 

triangle DCB we will obtain: 

𝐵𝐷 = √𝑎2 + 𝑥2 − 2𝑎𝑥 𝑐𝑜𝑠
𝛾

2
. 

Analogously, for the triangle ACD we will obtain 

𝐷𝐴 = √𝑏2 + 𝑥2 − 2𝑏𝑥 cos
𝛾

2
. 

Then 

𝐵𝐷 + 𝐷𝐴 = √𝑎2 + 𝑥2 − 2𝑎𝑥 𝑐𝑜𝑠
𝛾

2
+ √𝑏2 + 𝑥2 − 2𝑏𝑥 𝑐𝑜𝑠

𝛾

2
= 𝑐 = 𝐴𝐵 

and therefore D  [AC] (fig. 3). Therefore, x is a unique solution, because the bisector CD 

of the angle ACB is unique. Then, according to the planimetry theorem, the length of the 

bisector CD can be calculated according to the formula:  

𝑥 =
2𝑎𝑏 cos

𝛾
2

𝑎 + 𝑏
. 

Case 2. a < 0 and b < 0. In this case, we first solve the irrational equation of the form: 

√𝑎2 + 𝑥2 − 2|𝑥| cos
𝛾

2
+ +√𝑏2 + 𝑥2 − 2|𝑏|𝑥 cos

𝛾

2
= 𝑐.  (5) 

Let x0 be a solution of the irrational equation 

(1). According to Lemma 1, equation (5) admits a 

unique solution – x0, because equation (1) admits a 

unique positive solution. Theorem 1 is proved. 

Corollary 1. Let ab < 0, c > 0  and  0 < d < 1. The 

irrational equation of the form: 
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√𝑎2 + 𝑥2 + 2𝑎𝑑𝑥 + √𝑏2 + 𝑥2 − 2𝑏𝑑𝑥 = 𝑐,    (6) 

which satisfies the condition 

c² = (−a + b)² + 4abd²       (7) 

admits a unique solution. 

Corollary 2. Let ab > 0, 0 < d < 1 and 𝑐0
2=(a + b)² − 4abd². Then: 

1. If c < c0, then equation (1) does not admit any solution. 

2. If c = c0, then equation (1) admits a unique solution. 

3. If c > c0, then equation (1) admits two distinct solutions. 

Corollary 3. Let ab ≠ 0, d = 0 and c0 =|a|  + |b|. Then: 

1. If c < c0, then equation (1) does not admit any solution. 

2. If c = c0, then equation (1) admits a unique solution. 

3. If c > c0, then equation (1) admits two distinct solutions. 

 

III. Conclusions for the case of the interior bisector of the triangle 

The results presented in this article lead us to an interesting method for solving 

irrational inequations, namely: 

Let ab > 0, c > 0, 0 < d < 1 and c2 = (a + b)2 − 4abd2. Then the irrational inequation of the 

form: 

1. √𝑎2 + 𝑥2 − 2𝑎𝑑𝑥 + √𝑏2 + 𝑥2 − 2𝑏𝑑𝑥 < 𝑐 does not admit any solution. 

2. √𝑎2 + 𝑥2 − 2𝑎𝑑𝑥 + √𝑏2 + 𝑥2 − 2𝑏𝑑𝑥 > 𝑐 admit the solutions 

𝑥 ∈ (−∞;
2𝑎𝑏𝑑

𝑎 + 𝑏
) ∪ (

2𝑎𝑏𝑑

𝑎 + 𝑏
; +∞). 

3. √𝑎2 + 𝑥2 − 2𝑎𝑑𝑥 + √𝑏2 + 𝑥2 − 2𝑏𝑑𝑥 ≤ 𝑐 admit the solution 𝑥 =
2𝑎𝑏𝑑

𝑎+𝑏
. 

4. √𝑎2 + 𝑥2 − 2𝑎𝑑𝑥 + √𝑏2 + 𝑥2 − 2𝑏𝑑𝑥 ≥ 𝑐 admit the solutions x  R. 

  

In order to solve the irrational inequalities that have the forms indicated above, we 

must, first, solve the irrational equation of the respective form, then apply the ones 

mentioned above in this article. 

 

IV. The case of the exterior bisector of the triangle 

For the case of the exterior bisector of the triangle the form of the irrational equation 

has the form: 

√𝑎2 + 𝑥2 + 2𝑎𝑑𝑥 − √𝑏2 + 𝑥2 − 2𝑏𝑑𝑥 = 𝑐,    (8) 

where ab > 0, c > 0,   0 < d < 1 with the condition (fig. 4) 

c² = (a − b)2 + 4abd².      (9) 
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The analogue of Lemma 1 for the exterior 

bisector is 

Lemma 2. Let  ab > 0 and c > 0, where a, b, 

c are real numbers. The number x0 is a 

solution of the equation  

√𝑎2 + 𝑥2 + 2𝑎𝑑𝑥 − 

−√𝑏2 + 𝑥2 − 2𝑏𝑑𝑥 = 𝑐, 

if and only if the number − x0 is a solution of 

the equation √𝑎2 + 𝑥2 − 2𝑎𝑑𝑥 − √𝑏2 + 𝑥2 + 2𝑏𝑑𝑥 = 𝑐. 

The analogue of Theorem 1 for the exterior bisector is 

Theorem 2. Let ab > 0, c > 0 and 0 < d < 1, where a, b, c, d are real numbers. Irrational 

equation of the form 

√𝑎2 + 𝑥2 + 2𝑎𝑑𝑥 − √𝑏2 + 𝑥2 − 2𝑏𝑑𝑥 = 𝑐,    (10) 

which satisfies the condition 

c2 = (a − b)2 + 4abd2     (11) 

admits a unique solution. 

From Theorem 2 we obtain: 

Corollary 4. Let ab < 0, c > 0  and  0 < d < 1. The irrational equation of the form: 

√𝑎2 + 𝑥2 − 2𝑎𝑑𝑥 − √𝑏2 + 𝑥2 − 2𝑏𝑑𝑥 = 𝑐,   (12) 

which satisfies the condition 

c² = (a + b)² − 4abd²     (13) 

admits a unique solution. 

Corollary 5. Let ab > 0, 0 < d < 1 and 𝑐0
2=(a + b)² + 4abd². Then: 

1. If c < c0, then equation (8) admits two distinct solutions. 

2. If c = c0, then equation (8) admits a unique solution. 

3. If c > c0, then equation (8) does not admit any solution. 

Corollary 6. Let ab ≠ 0, d = 0 and c0 = ||𝑎| − |𝑏||. Then: 

1. If c < c0, then equation (8) admits two distinct solutions.  

2. If c = c0, then equation (8) admits a unique solution. 

3. If c > c0, then equation (8) does not admit any solution. 

 

V. Conclusions for the case of the exterior bisector of the triangle  

Let ab > 0, c > 0, 0 < d < 1 and c2 = (a − b)2 + 4abd2. Then the irrational inequation 

of the form: 

1. √𝑎2 + 𝑥2 + 2𝑎𝑑𝑥 − √𝑏2 + 𝑥2 − 2𝑏𝑑𝑥 < 𝑐 admit the solutions 

𝑥 ∈ (−∞;
2𝑎𝑏𝑑

𝑎 + 𝑏
) ∪ (

2𝑎𝑏𝑑

𝑎 + 𝑏
; +∞). 
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2. √𝑎2 + 𝑥2 + 2𝑎𝑑𝑥 − − √𝑏2 + 𝑥2 − 2𝑏𝑑𝑥 > 𝑐 does not admit any solution. 

3. √𝑎2 + 𝑥2 + 2𝑎𝑑𝑥 − − √𝑏2 + 𝑥2 − 2𝑏𝑑𝑥 ≤ 𝑐 admit the solutions x  R. 

4. √𝑎2 + 𝑥2 + 2𝑎𝑑𝑥 − − √𝑏2 + 𝑥2 − 2𝑏𝑑𝑥 ≥ 𝑐 admit the solution 𝑥 =
2𝑎𝑏𝑑

𝑎+𝑏
. 

5. Theorem 2 and its corollaries are valid for 

a ≠ b. In the case when a = b the triangle 

ACB becomes isosceles (fig. 5) and the 

outer bisector from the top of the isosceles 

triangle becomes parallel to its base. The 

outer bisector in this case is no longer a 

segment, but a half-straight, and therefore 

we cannot determine its length. From this it 

follows that any isosceles triangle describes 

an irrational equation, which has no 

solutions. 

 

VI. Problems solved 

Problem 1. Solve the following irrational equation: 

√9 + 𝑥2 − 3√2𝑥 + √16 + 𝑥2 − 4√2𝑥 = 5. 

Solution. We construct the right triangle ABC with 

legs AC = 4, CB = 3. Then hypotenuse AB = 5. Then 

we take the interior bisector of the right angle CD = x 

(fig. 6). 

Solving the irrational equation geometrically 

means finding the length of the interior bisector CD. 

We can indicate the following methods. 

Method 1. Applying the relationship 

𝐶𝐷 =
𝐴𝐶 ⋅ 𝐶𝐵√2

𝐴𝐶 + 𝐶𝐵
, 

we will get 𝑥 =
2⋅3⋅4⋅cos 450

3+4
=

12√2

7
. 

Method 2. Applying the relationship 
𝐵𝐶

𝐶𝐴
=

𝐵𝐷

𝐷𝐴
, we will get 

3

4
=

√9+𝑥2−3√2𝑥

√16+𝑥2−4√2𝑥
, from which the 

equation results 7𝑥2 − 12√2𝑥 = 0. This equation admits the solutions: x1 = 0 and 𝑥2 =

12√2

7
. But only x2 is a solution of the initial equation. 

Method 3. Note BD = 3y and DA = 4y. Then 3y + 4y = 5 or 𝑦 =
5

7
. Thus 
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𝐵𝐷 = √9 + 𝑥2 − 3√2𝑥 =
15

7
. 

We obtain the following irrational equation: 𝑥2 − 3√2𝑥 +
216

49
= 0. The solutions of the 

given equation are: 𝑥1 =
9√2

7
 and 𝑥2 =

12√2

7
. 

We can convince ourselves that only 
12√2

7
 is the solution of the initial irrational 

equation. 

Method 4. Applying the relationship 𝐵𝐷 = √𝐴𝐵 ⋅ 𝐵𝐶 − 𝐴𝐷 ⋅ 𝐵𝐷, we will get the solution 

𝑥 =
12√2

7
. 

Method 5. According to the theorem of sines, from the triangle CDB we obtain the 

following equation: 
𝑥
4

5

=
√9+𝑥2−3√2𝑥

√2

2

. The solution is 𝑥 =
12√2

7
. 

Problem 2. Solve the following irrational equation: 

√𝑥2 + 2𝑥 + 4 − √𝑥2 − 𝑥 + 1 = √3. 

Solution. We write the above irrational equation in the form: 

√4 + 𝑥2 + 2𝑥 ⋅ (2 ⋅
1

2
) − √1 + 𝑥2 − 𝑥 ⋅ (2 ⋅

1

2
) = √3 

or 

√4 + 𝑥2 + 4𝑥 ⋅ sin 300 − √1 + 𝑥2 − 2𝑥 ⋅ sin 300 = √3. 

We notice that 1, √3  and 4 are the sides of a triangle (fig. 7). 

We construct the 

exterior bisector CD and 

denote its length by x. The 

solution of the irrational 

equation will be the length of 

the bisector CD. Regarding 

the calculation of the length 

of the outer bisector, that is, 

to find the solution of the irrational equation, we can indicate the following methods. 

Method 1. According to the theorem of cosines in the triangle ACD we get 

𝐴𝐷 = √1 + 𝑥2 − 2𝑥 ⋅ sin 3 00 = √1 + 𝑥2 − 𝑥. 

On the other hand 

𝐴𝐷 =
𝐴𝐶 ⋅ 𝐴𝐵

𝐵𝐶 − 𝐴𝐶
=

1 ⋅ √3

2 − 1
= √3. 
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Thus √1 + 𝑥2 − 𝑥 = √3 or x2 − x − 2 = 0, where from x1 = − 2 and x2 = 2. The solution 

of the irrational equation is only x = 2. 

Method 2. From the analogous triangle BCD we calculate BD, ie 𝐵𝐷 = √𝑥2 + 2𝑥 + 4. 

But 𝐵𝐷 =
𝐵𝐶⋅𝐴𝐵

𝐵𝐶−𝐴𝐶
=

2⋅√3

2−1
= 2√3. But then the help of the irrational equation 

√𝑥2 + 2𝑥 + 4 = 2√3 

we obtain analogously that x = 2 is the only solution of the initial equation. 

Method 3. We can apply the formula 

𝐶𝐷 =
√𝐵𝐶 ⋅ 𝐴𝐶 ⋅ (𝐴𝐵 − 𝐴𝐶 + 𝐵𝐶) ⋅ (𝐴𝐵 + 𝐴𝐶 − 𝐵𝐶)

𝐵𝐶 − 𝐴𝐶
= 

=
√2 ⋅ 1 ⋅ (√3 − 1 + 2) ⋅ (√3 + 1 − 2)

2 − 1
= 

= √2(√3 + 1)(√3 − 1) = √2 ⋅ 2 = 2. 

Method 4. Since CD is the exterior bisector of triangle ABC, then 
𝐴𝐶

𝐵𝐶
=

𝐴𝐷

𝐵𝐷
. Thus 

1

2
=

√𝑥2 − 𝑥 + 1

√𝑥2 + 2𝑥 + 4
, 

where from √𝑥2 + 2𝑥 + 4 = 2√𝑥2 − 𝑥 + 1. 

Solving the last equation, we will obtain the solution x = 2. 

Method 5. Applying the relation from planimetry, the solution of the initial equation can 

be calculated according to the formula: 

𝑥 =
2 ⋅ 𝐵𝐶 ⋅ 𝐴𝐶 ⋅ sin

600

2
𝐵𝐶 − 𝐴𝐶

=
2 ⋅ 2 ⋅ 1 ⋅

1
2

2 − 1
= 2. 

Method 6. It is easy to find out that 𝑚(∠𝐴𝐵𝐶) = 300. Above we found out that 𝐴𝐷 = √3. 

Applying the theorem of cosines in the triangle CBD, we will get  

𝑥2 = 4 + 12 − 8√3 ⋅
√3

2
= 16 − 12 = 4, 

where from x = 2. 

Method 7. We apply the theorem of sines in the triangle CBD. We will get it 

𝑥

sin(∠𝐴𝐵𝐶)
=

𝐵𝐷

sin(∠𝐵𝐶𝐷)
 

or 
𝑥

sin 300
=

2√3

sin 1202
, where from x = 2. 

Method 8. It can be shown that the triangle CAD is a right triangle in A, and the measure 

of the angle ADC is equal to 300. The length of the leg CA opposite the angle of 300 in a 

right triangle is twice the length of the hypotenuse CD. Therefore x = CD = 2CD = 2. 
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Method 9. In a triangle BCD, the side of the triangle AC is the bisector and height, because 

 BCA ≡  ACD and BA = AD. This is possible only if the triangle BCD is isosceles with 

the base BD and the sides BC, CD. Therefore x = CD = BC = 2. 

Method 10. We can apply Stewart's Theorem to the triangle BCD, ie 

BC2 · AD + CD2 · BA − CA2 · BD = BD · BA · AD, 

4√3 + √3𝑥2 − 1 ⋅ 2√3 = 2√3 ⋅ √3 ⋅ √3, 

where from x2 = 4 or x1 = −2 and x2 = 2. 

Problem 3. Determine, if possible, the couple (x; y), so that 

√1 + 𝑥2 − √2𝑥 + √𝑥2 + 𝑦2 − 𝑥𝑦√2 + √2 + 𝑦2 − 2𝑦 = √5. 

Solution. It can be proved that there is a triangle with sides 

𝐴𝐵 = √2,  𝐵𝐶 = 1,  𝐴𝐶 = √5  and  𝑚(∠𝐴𝐵𝐶) = 1350. 

We construct the segments [BD] and [BE] so that ∠𝐴𝐵𝐸 ≡ ∠𝐸𝐵𝐷 ≡ ∠𝐷𝐵𝐶 and note 

BD = x, BE = y (fig. 8).  

With the help of the cosine 

theorem it is proved that the points 

E, D  (AC). The equalities are 

obtained: 𝑥 =
√2𝑦

1+𝑦
  and  𝑦 =

2𝑥

√2+𝑥
. 

Thus, we obtain the couple: (
√2

3
;

1

2
). 
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