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Rezumat. În acest articol, se studiază sistemele diferențiale cubice plane cu drepte reale afine invariante 
de multiplicitate totală opt. Pentru aceste sisteme diferențiale (în total 24 de sisteme diferențiale) este rezolvată 
problema de integrabilitate prin diverse metode: metoda Darboux, metoda directă și metoda computațională. Re-
zultatele obținute prin cele trei metode coincid, adică soluțiile obținute sunt echivalente între ele sau diferă între 
ele printr-o constantă de integrare.

Cuvinte-cheie: Sistem cubic diferențial, dreaptă invariantă, integrabilitate.

Abstract. In this article, we study cubic planar differential systems with affine real invariant straight lines 
of total multiplicity eight. For these differential systems (there are 24 differential systems) the integrability pro-
blem is solved by various methods: the Darboux method, the direct method and the computational method. The 
results obtained by these three methods coincide, i.e. the obtained solutions are equivalent to each other or they 
differ from each other by an integration constant.

Keywords: cubic differential system, invariant straight line, integrability.

1. Introduction
Consider the polynomial system of differential equations

),,(),,( yxQyyxPx == &&   (1)

where the functions ),( yxP  and ),( yxQ are polynomials in the variables x  and y of degree ,n  

where }deg,max{deg QPn =  or the differential equation
  (2)

Let X  be the vector field associated with the system (1) and defined by the relation
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Definition 1. A curve ],[,0 yxCff ∈=  is called an algebraic invariant curve for the system 

(1) if there exists a polynomial ],,[),( yxCyxK f ∈  called the cofactor of the algebraic invari-

ant curve, such that 2),( Ryx ∈∀  the following identity holds
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In particular, if then 0=f  it is called an 
invariant straight line of system (1).
Definition 2. An algebraic curve 0=f  of degree k  is invariant for the system (1) with algebra-

ic multiplicity ,m  if m  is the largest natural number such that mf  divides ),(XEd where
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and lvvv ...,,, 21  is a basis for the vector space of polynomials of degree ].,[: yxCd d

In the case of invariant straight lines, i.e. ,1=d  we can take yvxvv === 321 ,,1  and

                
).()()(1 PXQQXPXE ⋅-⋅=                           (5)

In 1878, Darboux published the paper [2] in which he indicated a general method for 
integrating differential equations of the form (2) using the algebraic invariant curves of the 
polynomial systems.

Let the polynomial system (1) have N  invariant algebraic curves ,,,1,0),( Njyxf j K==  

i.e. there are cofactors ,,,1),,( NjyxK j K=  such that the identities hold:
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The idea of Darboux is to search for a first integral of system (1) in the form

                         

CyxfyxF
N

j
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),(),( α ,                              (7)

where Cj ∈α  and ].,[),( yxCyxf j ∈  A first integral (7) is called a Darboux first integral.

Theorem 1. The polynomial system (1) has a Darboux first integral of the form (7) if and only 
if there exist constants ,,,1, Njj K=α  not all identically zero, such that

    
.0),(),(),( 2211 ≡+++ yxKyxKyxK NNααα K        (8)

In case system (1) does not have a first integral of the form (7), Darboux proposes to con-

struct the integrating factor of an analogous form

              

∏
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),(),( αµ ,                                      (9)

where Cj ∈α , and 0),( =yxf j , Nj ,,1 K=  are algebraic invariant curves.
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Theorem 2. The polynomial system (1) has a Darboux integrating factor of the form (9) if and 
only if there exist constants 

jα , Nj ,,1 K= , such that 
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Theorem 3. If system (1) has N
 distinct algebraic invariant curves 0),( =yxf j , ,,,1 Nj K=  

where
( )

2
1+

≥
nnN , then system (1) has a Darboux first integral of the form (7). 

Last years, the Darboux theory of integrability has been developed and extended for inva-
riant algebraic curves taking into account also their multiplicities. Multiple invariant algebraic 
curves generate exponential functions ,/ ii hge called exponential factors, which are part of the 
first integral (or integrating factor): .
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iij ef α
 In such situations, one speaks on genera-

lized Darboux integrability.
In [3-8] papers, the classification of cubic differential systems with a number of real and/

or complex invariant straight lines by directions has been carried out and the integrability pro-
blem has been solved using the Darboux method [2].

2. New results
In this paper we consider the cubic differential system

  (11)

where ∑
=+

=
kji

ji
ijk yxap  and ∑

=+

=
kji

ji
ijk yxbq ( 3,0=k ) are homogeneous polynomials of de-

gree k  in x  and y . The coefficients ija  and ijb  in polynomials kp  and kq  are assumed to 

be real, and the condition GCD(P,Q)=1 ensures that the right-hand sides of system (11) have 

not common factors.

Theorem 4. Any cubic differential system with eight real invariant straight lines (including 
their multiplicities) can be transformed via an affine coordinate transformation and a rescaling 
of time into one of the 25 systems listed in Table 1 (see [1]).
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Tabelul 1. Cubic differential systems with eight real invariant straight lines and their first integrals

322 
 

Tab. 1. Cubic differential systems with eight real invariant straight lines and their first integrals 
 

No Differential systems First integrals/integrating factor 
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For the class of cubic differential systems with eight real invariant straight lines, the 
integrability problem has been solved by various methods: the Darboux method (finding the 
Darboux first integral or the Darboux integrating factor), direct method (reducing the differen-
tial system to a first-order differential equation), and computational method (using Wolfram 
Mathematica software), see Table 1.

3. Justification 
We will show various methods of integrability for the differential systems listed in The-

orem 4.
Case I. Integrability of System No. 3. Let the differential system be
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For the class of cubic differential systems with eight real invariant straight lines, the 

integrability problem has been solved by various methods: the Darboux method (finding the 
Darboux first integral or the Darboux integrating factor), direct method (reducing the 
differential system to a first-order differential equation), and computational method (using 
Wolfram Mathematica software), see Table 1. 
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Case I. Integrability of System No. 3. Let the differential system be 











],)1)[(1(

,0),)(1(

rryxryyy

rrxxxx
&

&
                       (12) 

where ,1 xl  ,12  xl ,3 rxl  ,4 yl  ,15  yl ,6 yxl  ryxl 7  are the invariant 
straight lines of this system. 

The cofactors of the mentioned straight lines are 
),)(1(),(1 rxxyxK  ),(),(2 rxxyxK  ),1(),(3  xxyxK

),)(1(),(4 rryrxxyyxK  ),(),(5 rryrxxyyxK 
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By equating the coefficients next to the monomials ,jk yx  where 2,0, jk  we will have 

 (12)
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By equating the coefficients next to the monomials ,jk yx  where 2,0, jk  we will have 
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By equating the coefficients next to the monomials ,jk yx  where 2,0, jk  we will have 
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System (13) is an undetermined compatible system that has the solution 
./,/)1(,,/,0 7674737251 rrrr    

Substituting r7  we will have: 

.,1,1,,1,0 7643251 rrr    
Therefore, by substituting the obtained exponents and the invariant straight lines of the system 
(12) into relation (7), we obtain the Darboux first integral: 
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Case II. Integrability of System No. 4. Let the differential system be 
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where ,321 xlll  ,54 yll  ,6 yxl  yrxl 7  are the invariant straight lines of 
this system. 
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By equating the coefficients next to the monomials ,jk yx  where 2,0, jk  we will have 
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System (15) is an undetermined compatible system. From system (15), we obtain:
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being a linear differential equation. Using the Wolfram Mathematica Software, we obtain: 
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b) Direct method. The system (15) can be reduced to a differential equation of the form
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Case III. Integrability of System No. 22. Let the differential system be
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Case III. Integrability of System No. 22. Let the differential system be 
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which has the invariant straight line .1 xl   System (17) can be brought to the form 

22 xy
x

y                               (18) 

being a linear differential equation. Using the Wolfram Mathematica Software, we obtain: 
 

  (17)
which has the invariant straight line .1 xl =

 System (17) can be brought to the form
22 xy

x
y -=+′   (18)

being a linear differential equation. Using the Wolfram Mathematica Software, we obtain:

Similarly, using the mentioned methods, the other prime integrals from Table 1 are also 
demonstrated.
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