
CZU: 004:378

CONTESTS GRADING SYSTEMS IN PROGRAMMING EDUCATION

Krassimir MANEV, Ph.D., Chief editor

https://orcid.org/0000-0002-3275-374X

Journal Mathematics and Informatics, Sofia, Bulgaria

Abstract. Programming contests are very popular form for attracting young people to the profession of

program developers. Because of the nature of these contests for long years the evaluation of the contestants’
works is performed with developed for the purpose Contest Grading Systems (GS) that spare time and

eliminate evaluation mistakes. As the qualities of the contestants that are checked in a programming contest

are the same with the qualities of the students that are prepared to be professional programmers are the same,

GS could be successfully used in education in programming, too. In this paper we introduce GS – what they

are, how they are used in evaluation of programming contest and how they could be used in education of

programming. Different challenges that using of GS rise when they are used in such education are outlined

and ways to cope with such system are discussed.

Key words: programming contests; evaluation of programs; contest grading systems; education in

programming; programming training sites.

SISTEME DE EVALUARE A CONCURSURILOR

ÎN EDUCAȚIA PRIVIND PROGRAMAREA

Abstract. Concursurile de programare sunt o formă foarte populară pentru atragerea tinerilor către profesia de
dezvoltatori de programe. Datorită naturii acestor concursuri de ani îndelungați, evaluarea lucrărilor
concurenților se realizează cu ajutorul Sistemelor de clasificare a Concurenților (GS) dezvoltate în acest scop,
care economisesc timp și elimină greșelile de evaluare. Deoarece calitățile concurenților care sunt verificați
într-un concurs de programare și calitățile studenților care sunt pregătiți să fie programatori profesioniști sunt
aceleași, GS ar putea fi folosit cu succes și în formarea programatorilor. În această lucrare prezentăm GS – ce

sunt acestea, cum sunt utilizate în evaluarea concursului de programare și cum ar putea fi utilizate în educația

privind programarea. Sunt subliniate diferitele provocări cu care se confruntă în utilizarea GS atunci când sunt
utilizate în astfel de educație și sunt discutate modalități de a face față unui astfel de sistem.
Cuvinte cheie: concursuri de programare; evaluarea programelor; sisteme de clasificare a concurenților;
educație în programare; site-uri de instruire în programare.

1. Introduction

Using computers and computer programs in education is an inevitable trend nowadays

in any domain but especially in the domains of Science, Technology, Engineering and

Mathematics. Computer is the main instrument in education in Informatics and Information

Technologies because the essence of these disciplines is the computer programming. But in

education in programming computer could be not only an instrument and object of teaching

programming. Computer applications could be used to help the process of education as well

as in any other disciplines.

Nowadays competitions in programming (popular as programming Olympiads) actively

use complex software system to optimize the organization of the events – so called Contest

17

https://orcid.org/0000-0002-3275-374X

Grading (or Contest Management) Systems – shortly Grading Systems (GS). Even if one GS

has many components, its principle component is the evaluating component, dedicated to

check the correctness and the efficiency of the solutions submitted by the contestants. That is

why the GS could be extremely helpful in the education in programming. They could save

enormous volume of teachers’ work and to make in such a way the educational process more

intensive and fruitful.

In this paper we would like to present shortly the history and functionalities of GS and

to share our experience of using such systems for education in Programming and Algorithms.

2. What is a Grading System?

Programming contests consist of solving algorithmic tasks with computer programs.

Contestants have to write the source code of the solution in one the programming languages

(C and Pascal in the past, C/C++ and Java recently) proposed by the contest rules. Tasks are

such that the programs have to read data from the standard input and write the result on the

standard output (Forišek 2006). Reading input from a named text file and writing output in a

named text file was asked before but is not applied today. The modern trend is that contestants

have to write not a program but one or more functions with prescribed interface that are

compiled and linked with a main function of the author, input data are passed to the

contestant’s function by reference and asked results are returned to the author’s part. In such
way contestants do not need to read data or to write results. This is saving time during the

testing. Some negative aspects of this and other trends in programming contests are discussed

in (Manev 2019).

Submitted to the system contestant’s code is compiled, linked with the external modules,

if any, and tested with a set of test cases. Three criteria are considered for accepting the submit

– solving the test cases within some limit of time, with some limit of memory and, finally,

writing the correct answers.

Three principle styles of assigning grading marks are used. In ICPC style (practiced in

the contests for teams composed of university students) the submitted solution obtains one

grading point if the program passes successfully the three criteria for all test cases and time

passed from the beginning of the contest is registered. Teams are ranked by the amount of the

obtained points and teams with equal number of points are ranked by the sun of elapsed times.

In IOI stile (practiced in the individual contests for secondary school student) for each

successful test case contestant obtains some points and ranking is by the sum of obtained

point from all test cases of all tasks. Intermediate stile (practiced only in IOI style contests) is

grouping test cases in a few groups and assigning points dedicated for the group if the program

passes successfully all test of the group. Some GS maintain one of the styles, some – two, and

some – all three styles.

By the described functionality it could seems that creating GS is not very difficult. But

there are two crucial elements in the architecture of GS that need very high level of

18

competence. First, GS has to keep in secret all test cases and not permit usage of some

important facilities of the OS of the grading machines from the programs of contestants,

because more of them are usually very experienced and could obtain not acceptable

advantages. This is implemented by so called sand box – a specialized shield component of

the system that protects test cases and access to macros of the OS. Second – the control on

the used by the program resources, especially the elapsed by the program time, is extremely

difficult on grading machines with multitasking OS – usually UNIX-like OS and is still an

object of intensive research. Discussion on this and other difficulties in implementing GS you

could see in (Mareš 2007; Manev et al. 2009; Tochev&Bogdanov 2010).

3. Short history

The first Grading System, probably, is ACM ICPC system PC2 or PC^2 (PC2 Home

page 2022). First version of PC2 is issued in Sacramento State University in 1988 and used

for evaluating local contests in ICPC style. In 1994 the version 4.1 was used for first time

during the World Finals of ICPC. Since that PC^2 became the official GS of ICPC – not only

for the World Finals but for all Regional Rounds of the contests too for long time. Due to its

architecture – a server part and few client parts – it was relatively difficult to maintain and

was step by step replaced by modern Web-based GS. The system is still in use and the current

version pc2v9 could be found trough the proposed above reference. Bulgarian Web-based

Grading System spoj0 for ICPC style grading was created by our student (Sredkov 2006) and

was used long years for preparation of the team of Sofia University and in organizing

Bulgarian Collegiate Programming Contest.

The first system for grading contests in IOI style was used during IOI’1999, held in
Antalia, Turkey. It was implemented as an UNIX Shell script and was very primitive.

Nevertheless, grading of the work of 253 contestants per day was finished for 3-4 hours,

comparing to the manual grading during IOI’1998 which took more 12-15 hours per day.

After only one year later organizers of IOI’2020 in Beijing, China, used normally
implemented (not script but executable) GS. The contests of IOI’2001 (Tampere, Finland),

IOI’2003 (Kenosha, Wisconsin, USA), IOI’2004 (Athens, Greece) and IOI’2008 (Cairo,

Egypt) were organized with the GS of USACO – developed for national contest and training

of the national teams of USA for IOI (Kolstad 2007). Refusing to use GS of USACO, the host

Technical committee of IOI’2002 (Yong-In, Republic of Korea) succeed to implement own

almost full-functional GS inside 3-4 months. Poland also implemented own GS for IOI’2004
(Nowy Sącz, Poland). Preparing for IOI’2009, a team of Bulgarian students extended the

Korean GS to full functional GS SMOC, appending a sand box and stable time measuring

(Tochev&Bogtanov 2010). Beside IOI’2009 SMOC was used for organizing Bulgarian

contest in IOI style and in some Balkan Olympiads in Informatics.

For IOI’2012 (Sirmione, Italy) GS CMS (Contest Management System) was created. It

encapsulated the long years experience in implementing GS and became de facto standard for

19

creating such systems grading in IOI style (Maggiolo&Mascellani 2012). Since this moment

CMS was used for organizing IOI and many others regional and national contests in IOI style.

Anyway, recently some GS with possibilities for hybrid grading (in ICPC and IOI style

– with or without grouping of the tests) were implemented. For Bulgarian contests, both for

secondary school students and university students, in 2020 was developed the system BOS

(Bulgarian Olympic System), which could grade in the three styles (Kelevedjiev et al. 2020).

Because of the COVID pandemic BOS incorporate also a module for monitoring behavior of

the contestants during the on-line contests.

4. Evaluation with Grading System

Teaching programming is a complex process composed of two streams of activities –

learning and practicing. Getting ability to create computer programs starts with learning.

Different kinds of knowledge are absolutely necessary for being programmer. Future

programmers have to know some parts of the Discrete mathematics, principles of the

programmable machines, computer architecture, at least one operating system, at least one

programming language with its library of standard programs, algorithms, etc.

But learning such amount of knowledge is still not enough for being a programmer.

Practicing, and only practicing, would demonstrate the effect of learning. Teaching of

programming long years ago perceived this concept, nowadays called STEM. And

programming contests for young programmers is the instrument of our community to

implement this concept. So, for being successful contestant it is necessary to practice, practice

and practice.

The benefits of using GS in teaching programming are many. First, using GS the teacher

(university professor) could make the process more intensive, because the GS give the

possibility to perform intensively control testing of the level of progress of the students, and

in result to slow the process when the results of testing are not satisfactory. In my practice as

a teacher/professor of Programming and Algorithms I had in some years to teach groups of

few tens and even hundred students. Before to start using GS we were able to achieve 2, or

maximum 3, control testing. With using of GS we are performing control test after the end of

each topic.

Second, using GS spares a huge amount of time. Without GS evaluation of the works

of the students could take few days and even weeks. With GS the results of evaluation are

ready in the moment of finishing the test. In such a way the teacher could dedicate the time

saved to other activities, for example to preparing tasks.

Third, with manual evaluation of students’ programs teacher could execute 3-5 test cases

per work, because checking with more tests will increase even more mentioned above

necessary time. In programming contests, for being sure that the contestants’ programs are
perfect, authors of the tasks prepare, sometime, hundreds of test cases and this do not

increase significantly the elapsed evaluation time.

20

Fourth, using GS for control testing totally change the behavior of the students during

the control tests. When students make a control test without GS they usually check their

program with 2-3, not very appropriate test cases or do not test it at all. Huge tests cases, with

MiB of input, for the tasks with intensive input, are not performed too. As a result, the

students’ programs are practically not tested at all. When teacher performs more adequate
testing the obtained by the student grades is bad. The GS return for each submitted solution

so called feedback – how many tests are passed successfully (Accepted), on how many tests

the program stopped abnormally (Run Time Error), on how many tests the program

overpassed the permitted resources (Time Limit Exceeded or Memory Limit Exceeded) and

for how many test cases the program produced not correct result (Wrong Answer). This

feedback of GS force students to debug programs in order to obtain higher grading. My

experience categorically showed that with usage of GS in control tests the results of the

students ameliorated significantly. Here is the moment to stress that ability to debug program

code is at least so important as the ability to write cod because, statistically, necessary time

for writing code is much more than the necessary time to debug it.

Using GS is not just beneficial but generates some difficulties also. The main difficulty

is preparing competitive tasks which include a sequence of activities. As a beginning the

teacher have to formulate adequate programming tasks for the topic adoption of which will

be tested. As many tasks as better. Initially this will take much time. But with a constant and

systematic work the amount of tasks will increase permanently. It will be necessary more easy

tasks for the primary control tests as well as more hard for the final testing. Traditionally,

task’s statement has to comprise precise formulation of what the asked program has to do,

precise formulation of input data format (contest tasks suppose that input data obey the

specified format and the student program has not to check the correctness of the input), precise

formulation of the format of the output data, limits for the size of input data, some sample

input with corresponding sample output, and if it is necessary – explanation of the sample

output.

When the adequate task is ready the teacher has to consider different algorithms that

solve the task. The ideal is to have one trivial algorithm, usually directly following from the

statement of the task. Such algorithm, with time complexity O(N3) or O(N2) for example,

students could invent with good knowing of the programming language only. Then one

intermediate algorithm that involves, beside the good knowing of the programming

language, good ruling of corresponding data structuring, with time complexity O(N.log N) for

example. And, of course, one not trivial algorithm that needs deep understanding of the

tested material and possible algorithmic approaches, with time complexity O(N) for example.

For each of possible algorithms a corresponding program has to be written in each of proposed

by the teacher programming languages, in order to check possibility to implement the

algorithm with the language and its library of standard subprograms.

21

Next stage of the preparation is creating the test cases. According the theory of “black

box testing” (i.e. testing without knowing the code of the program) the set of test cases has to

comprise tests with different sizes – short, middle and large enough. We are practicing a

“logarithmic” increasing the size – N = 10, 20, 50, 100, 200,500, 1000, 2000, 5000, 10000,

and so on. It is clear that short test cases could be prepared by hand. But for middle and large

test cases using a random generation is inevitable. Set has to include any imaginable specific

or extremal combination on test data which could be done mainly in hand made short test.

Having algorithms implementations and the test cases, the author of the task has to

determine the time limit and memory limit that will be applied on each run. Choosing the

time limit is the only possible way to control efficiency of the used by the student algorithm

when testing is “black box”. That is why it has to be chosen in such a way that with the “slow”
algorithms no more than 20-30% of the grading points (or 3-3,50 in 6-degree grading system)

to be earn, no more than 50% of points (or grades 4-5) to be earned by the middle speed

algorithms, and 90-100% (or grades 5,50-6) – by the fastest algorithms. For most of the tasks

memory limits are by default fixed to some reasonable quantity – 256 MiB for example. But

there are tasks for which the quantity of used memory is a measure for the quality of the

algorithm. Such for example are some tasks solvable by Dynamic programming, when the

size of the used by the approach table to store solution of the sub problems is crucial.

For most of the competitive tasks the result that program has to find is unique. But some

tasks have multiple possible result. When the task is with unique possible result checking it

correctness is done with simple comparing of the program input and the output of the author.

When the task is with multiple possible answers then the author has to prepare a special

program – checker – that checks correctness of the program result. Writing a checker could

be much more difficult than writing a solution of the task because it has to be able to catch

many possible deviations of the program output from the specified output format. This

difficulty could be escaped by including in the statement of the task a rule that makes the

correct output unique – min or max of the possible results (for scalar results), sorted in some

way output (when the result is a sequence of values), output in lexicographical order (when

the result is a set of sequences), etc.

Sometime the teacher would not like to ask students to write a complete program but

just one or few modules (as in mentioned above current trend in programming contests). In

such case she/he has to prepare the necessary main function and the other necessary

modules and supply them to the student via the corresponding function of the GS (in

programming contests author’s modules are secret because they could contain information

that contestants have not to know).

Closing this section, we would like to stress that some GS maintain many programming

languages, some of which are not usable (and never will be used) in programming contest. In

(Ribeiro et al. 2009) is presented the experience of the authors in teaching Logic Programing

with a GS.

22

5. Grading Systems in education

In order to use one GS in programming education some additional functionality have to

be appended to it in order to become a Training System (Manev et al. 2011). On the first place

the GS has to be extended with a Tasks Repository. We have mentioned above that creating

collection of appropriate tasks is long and time-consuming process. That is why each created

task have to be carefully archived in the Repository for using in the future with all its attributes

– statement, test cases, expected results, checker(s) (when the possible results are more than

one), description and complexity analysis of possible algorithms.

For programming contest test cases, corresponding results and author’s description and
complexity analysis are secret. But, after the end of the contest, a good practice is contestant

to finish the solving of their imperfect solutions and/or to try to solve the tasks that was not

solved at all during the contest – this is the essence of the training of contestants. That is why

Training System have to include a functionality giving possibilities (without or with some

form of control) that provides some access to the task’s resources. Exactly the same is
appropriate for teaching programming in secondary schools or in the universities.

A modern trend is Training System to be included in Web-based Training site (TS), also

known as On-line Judge site. So, after the necessary registration, each person which is

interested has a possibility to train within the system. There are different ways to organize

tasks in the Repository of the system. Some TS keep simply List of the tasks, others keep

them in Classified categories depending of necessary algorithmic approach, and third – in a

form of Contest sets of tasks (from real or “possible” contest). Some TS maintain mixed

organization of the tasks.

Some of the Web-based TS judge in ICPC style, other in IOI style. Some TS provide

both forms of judging. Statements of the tasks in TS are mainly in English, but in some TS

some of the tasks are translated in other languages.

The first Web-based TS we know, that judges in ICPC style, is the University of

Valladolid, Spain, Online Judge site or UVaOJ (Revilla et al. 2008; UVAOJ 2022). List of

more than 13000 task (including all tasks from past ICPC) are proposed for training as well

as sets of tasks, from programming contest or combined by the managers of the site for

training, too. Missed classification of tasks based on applicable algorithmic approach is

compensated to some level by the fundamental book (Hallim et al. 2020), where each section

is illustrated by tasks from UVaOJ’s Repository. Hardness of each task could be estimated by

the statistical data for the ratio of submitted and accepted solutions.

The first Web-based TS we know, that judges in IOI style, is the training site of the

mentioned above USACO (USACO 2022). Tasks in this site are organized in contest sets,

mainly from national Olympiads of USA, training camps of national teams of USA for IOI

and regularly provided open training contests in 3 levels (Bronze, Silver and Gold division)

with different level of difficulty.

23

First Bulgarian TS Mycamp Arena was created in 2010 (Mihov 2011). Recently

mentioned above Bulgarian GS BOS was incorporated in a modern training site (ARENA

2022), keeping part of the name of the first Bulgarian Training site. Tasks from all Bulgarian

national contest since 2009 and some international contest where Bulgarian national team

took part are classified by topic and in contest sets. Judging is in IOI stile. Statements of some

of the tasks have English translation.

Other popular TS are:

• Sphere Online Judge (SPOJ 2022) of Sphere Research Labs proposing more than 13000

tasks, including original tasks of SPOJ team and judging in ICPC style;

• Kattis Problem Archive (KATTIS 2022), which propose list of tasks and IOI style

judging;

• Timus Online Judge (TIMUS 2022), maintained by a team from Ural Federal

University, Russian Federation. Tasks are mainly from local contests and are organized

in different lists. Difficulty of the tasks is estimated by the number of accepted solutions;

• The chinеese Peking University Online Judge (PKOJ 2022) and Tsing Hua University

Online judge (THOJ 2022), where the judging is in ICPC style and tasks are organized

in lists, etc.

6. Creating own tasks and contests

Mentioned above TS are “closed” – the teachers can not include their own tasks in the

Repository, neither to create own “contest” and to obtain automatic list of grades of the
participant, which is important for using GS in education. Fortunately, some TS provide not

very difficult user interface for teachers to include their own tasks in the Repository, to create

their own contest/exams and to obtain final grading of the students. We will shortly present

here two such TS.

TS Hacker Rank (HACKRANK 2022) is created from consortium of software

companies originally as “a technology hiring platform that is the standard for assessing
developer skills for over 2,800+ companies around the world.” The system has full
functionality for organizing programming contest including facilities for creating own tasks,

composing task sets and automatically grading of obtained by the participant results. For using

the system, a registration is necessary.

Figure 1. Creating a task

24

After identification of the user, choosing the

Link Administration opens two main tabs – Manage

Challenges and Manage Contests. For creating a

task, we press the button Create Challenge (Fig. 1).

In the tab Details of the corresponding windows we

fill the attributes of the task in the traditional format

of contest tasks. Main attributes – Problem

statement, Input format, input Constraints and

Output format – are shown on Fig. 2. When the

statement is saved we choose the programming

language(s) that student could use in the tab

Languages. System could judge programs written in 61 languages (or language dialects).

In the same tab teacher chooses Time Limit and Memory Limit for the different

programming languages. Unfortunately, minimal time limit that HackerRanc can assign for a

single test case is 1 sec. which is anachronism having in mind the speed of nowadays

computers. This could force the teacher to create very large test cases in order to estimate

time complexity of the used by the submitted program algorithm.

Final mandatory step in creating the tasks is uploading the test cases and expected output

in the tab Test Cases. For judging in IOI style test cases have to be in separate files, and for

ICPC style – in a single file. The test case marked as Sample and the corresponding output

will be shown to students in statement of the tasks and will be tested but not graded.

Judging in IOI style HackerRank will assign for each successfully passed test a

proportional part of the assigned by the teacher points. Judging in ICPC style, for successive

run HackerRang will assign 1 grading point for the task and will register the elapsed time and

the punishments (usually 20 minutes for each rejected submit).

When the necessary tasks are ready the teacher could create a contest in the tab Manage

Contests. In the tab Details teacher has to fill the start and the end the the contest or to leave

the end undefined if it is a long term training contest. Tasks are appended in the tab Challenges

(Fig. 3). Each task is appended by name with the button Add Challenge and grading points

are filled in the text box Max Score. Saving the defined contest is obligatory, of course.

Figure 3. Appending tasks in the contest

Figure 2. Task statement

25

During the contest the teacher could observe the progress of

the students from the link Current Leaderboard in the page of the

contest (Fig. 4) and make corrections of parameters of the contest

(end time, assigned grading marks, not correct tests or/and outputs,

etc.) from the link Manage Contest. If some parameters of the task

are changed during the contest, then the teacher could reevaluate all

concerned submits from the link Review Submissions. And more,

the teacher could view source codes (extracted by the login of a

student or by name of the task) from the link View All Submissions and to provide some

remarks or/and suggestions when necessary.

Another popular TS with the full functionality for creating own tasks and contests is

Yandex.Contest (YANDEX 2022). We will not consider here its functionalities in depth

because they are very similar to the functionalities of HackerRank. But it is important to

mention its functionality for preventing cheating – very important and useful when GS are

used for education and especially in the case of online education and examining.

7. Conclusions

Modern Grading Systems, developed to make the evaluation of programs of participants

in different programming contest – for secondary school and university students as well as

professionals to be hired are result of long years work of very qualified specialists. It is natural

that they evaluated to the modern Training sites for contestants and many such sites are

nowadays in use. As the preparation of contestants is not principally different from the

programming education of future software developers, it is expected that GS could be helpful

in education of programming, too.

GS could make the work of teachers in programming in schools, universities and

different other forms of programmers teaching more easy and effective which will be very

helpful for the society. But the usage of GS for programming education need some additional

functionalities to be appended to existing GS. For example, Repositories of tasks to be

appended, which is a fact. Other functionalities, as controlled access to the resources are still

not completely implemented and this have to be the next step to adapt GS for education in

programming.

Bibliography

1. ARENA. Арена. https://arena.olimpiici.com/#/, last visited on 23.10.2022.

2. FORIŠEK, M. On the suitability of programming tasks for automated evaluation.

Informatics in Education, v. 5(1), 2006, 63-75.

3. HACKRANK. HackerRank for Developers. https://www.hackerrank.com/, last visited

on 23.10.2022.

Figure 4.

26

4. HALLIM, ST.; HALLIM, F.; SUHENDRY, E. Competitive programming 4. authors’
edition, 2020.

5. KATTIS. Kattis Problem Archive. https://open.kattis.com/, last visited on 23.10.2022.

6. KELEVEDJIEV, E.; BRANZOV, T.; PETROV, P.; SHALAMANOV, M. Bulgarian

Platform for Competitive Informatics. Mathematics and Education in Mathematics,

Proc. of 49-th Spring Conference of UBM, Borovetz, 2020. 123–130 [in Bulgarian].

7. http://www.math.bas.bg/smb/2020_PK/tom_2020/pdf/123-130.pdf

8. KOLSTAD, R.; PIELE, D. USA Computing Olympiad (USACO). Olympiads in

Informatics, v. 1, 2007, 105–111. https://ioinformatics.org/journal/INFOL016.pdf

9. MAGGIOLO, ST.; MASCELLANI, G. Introducing CMS: A Contest Management

System. Olympiads in Informatics, v. 6, 2012, 86-99.

10. https://ioinformatics.org/page/ioi-journal-index/44

11. MANEV, KR.; SREDKOV, M.; BOGDANOV, TS. Grading Systems for Competitions

in Programming. Mathematics and Education in Mathematics, Proc. of 38-th Spring

Conference of UBM, Borovetz, 2009, 103-116.

12. http://www.math.bas.bg/smb/2009_PK/tom_2009/pdf/103-116.pdf

13. MANEV, KR.; SREDKOV, M.; ARMYANOV P. Software Platform for Teaching

Programming with Grading Systems. Mathematics and Education in Mathematics, Proc.

of 40-th Spring Conference of UBM, Borovetz, 2011, 300–305.

14. MANEV, KR. Teaching computer programming in schools, Acta et Commentationes,

4(18), 2019, Chisinau, ISSN 1857-0623, E-ISSN 2587-3636.

15. MAREŠ, M. Perspectives on grading systems. Olympiads in Informatics, v. 1, 2007,

124-130. http://www.mii.lt/olympiads_in_informatics/pdf/INFOL003.pdf

16. MIHOV, V. Maycamp Arena Project – using contest grading systems in programming

education, Mathematics and Education in Mathematics, Proc. of 40-th Spring

Conference of UBM, Borovetz, 2011. 438-443. http://www.math.bas.bg/

smb/2011_PK/tom/pdf/438-443.pdf

17. PC2 HOME PAGE. http://www.ecs.csus.edu/pc2/, last visited 13.10.2022.

18. PKUOJ. Peking University Online Judge, http://poj.org/, last visited on 23.10.2022.

19. REVILLA, M. A.; MANZOOR, S.; LIU, R. Competitive learning in informatics: the

UVa on-line judge experience. Olympiads in Informatics, v. 2, 2008, 131-148.

20. http://www.mii.lt/olympiads_in_informatics/pdf/INFOL035.pdf

21. RIBEIRO, P.; SIMÕES, H.; FERREIRA, M. Teaching Artificial Intelligence and Logic

Programming in a Competitive Environment. Informatics in Education, v. 8(1), 2009,

85-100. http://www.mii.lt/informatics_in_education/pdf/INFE143.pdf

22. SPOJ. Sphere Online Judge, https://www.spoj.com/problems/classical/, last visited on

23.10.2022.

23. SREDKOV, M. Contest grading system spoj0. Diploma thesis for obtaining MSc

degree, Faculty of Math. and Comp. Science, Sofia University, 2006 (in Bulgarian).

27

http://www.math.bas.bg/

24. THUOJ. Tsing Hua University Online Judge, https://dsa.cs.tsinghua.edu.cn/oj/, last

visited on 23.10.2022.

25. TIMUS. Timus Online Judge. https://acm.timus.ru/problemset.aspx, last visited on

23.10.2022.

26. TOCHEV, T.; BOGDANOV, TZ. Validating the Security and Stability of the Grader

for a Programming Contest System, Olympiads in Informatics, vol. 4, 2010, 113-119.

27. http://www.mii.lt/olympiads_in_informatics/pdf/INFOL058.pdf

28. USACO. USACO Training Program Gateway. https://train.usaco.org/, last visited on

23.10.2022.

29. UVAOJ. University of Valladolid On-line Judge. https://onlinejudge.org/, last visited on

23.10.2022.

30. YANDEX. Yandex.Contest Online Judge, https://contest.yandex.com/, last visited on

23.10.2022.

28

